A CMOS-compatible High-speed Silicon Lateral Trench Photodetector

Min Yang, Ken Rim, Dennis Rogers, Jeremy Schaub, Jeffrey Welser, Daniel Kuchta, Diane Boyd

IBM T. J. Watson Research Center Yorktown Heights, New York 10598

Limitations of Traditional Silicon p-i-n Photodiode

- •Carrier transit time ~W ⁻¹
- •Light absorption ~1-e^{-αW}

at 845nm α⁻¹≈15μm in silicon

- There is a trade-off between speed and quantum efficiency for silicon p-*i*-n photodiode.
- Conventional (non-resonance enhanced) Si PIN (or MSM) external η<30% with 3-dB bandwidth >2GHz

Advantages of <u>Lateral Trench Detector</u> (LTD)

Main feature

- Deep trenches filled with p+ or n+ polysilicon
- Photo-generated carriers are collected laterally towards the trenches.

LTD decouples light absorption depth from the carriers transit distance ⇒ high speed and high quantum efficiency

Cross-sectional SEM of Lateral Trench Detector

After BSG CMP

Before n⁺ polysilicon deposition

DC response from Lateral Trench Detector

Photo-current under white light/dark

10⁻⁷

Ontreut (A) 10⁻⁹ III dark

-10

Reverse Bias (V)

-20

Quantum Efficiency vs. Wavelength

- Extremely low leakage current (~pA) and high breakdown voltage
- Response=0.45A/W at 845nm \Rightarrow external quantum efficiency η =66% w/o anti-reflection coating

-30

10⁻¹³

Eye-diagram of LTD wire-bond with BiCMOS TIA

- 845nm wavelength laser was modulated at 27-1 PRBS data pattern
- Supply voltage is 3.3V